
R-93465 PROGRMMING LANGUAGE CONCEPTS FOR MULTIPROCESSORS(U)
1/1RD-19 COLORADO UNIV AT SOULDER COMPUTER SYSTEMS DESIGN GROUP

UNCLASSIFIED H FJORDAN SEP 8? CSD-97-4 NMSI4-U6-K-8204 F/G 12/ U

i EEEEEEEEEEEEE
'NONEflf

Im

12!Z8

11,111 11 11 11 11 1 1 11II

R-IUI 116M

" tnO~lFILE cu

a)
U r
4 II

Programming Language Concepts

For Multiprocessors

by

Harry F. Jordan

DTIC
AME'ECTEI
NkMARI 0198M

Computer Systems Design Group
Department of Electrical and Computer Engineering

University of Colorado
Boulder, CO 80309-0425

CSDG 87-4
September 1987

:%to

Programming Language Concepts for Multiprocessorst

Harry F. Jordan

iAbstract
It is currently possible to build multiprocessor systems which will sup-

port the tightly coupled activity of hundreds to thousands of different
instruction streams, or processes. This can be done by coupling many
monoprocessors, or a smaller number of pipelined multiprocessors, through a
high concurrency switching network. The switching network may couple pro-
cessors to memory modules, resulting in a shared memory multiprocessor sys-
tem, or it may couple processor/memory pairs, resulting in a distributed
memory system.

The need to direct the activity of very many processes simultaneously
places qualitatively different demands on a programming language than the
direction of a single process. In spite of the different requirements, most
languages for multiprocessors have been simple extensions of conventional.
single stream programming languages. Theexfnsions are often implemented
by way of subroutine calls and have little iMpact on the basic structure of the
language. This paper attempts to-examino the underlying conceptual struc-
ture of parallel languages for large scale miultiprocessors on the basis of an
existing language for shared memory multiprocessors, known as the Force,
and to extend the concepts in this language to distributed memory systems.

This work was supported in part by Los Alamos National Laboratory under Subcontract No. 9-
XSH-6604M-I and by ONR under Grant N00014-86&k-0204.

I

Introduetion
Early multiprocessors were capable of supporting only a few instruction

streams executing simultaneously. In this environment, it is not 'hard to
write separate code for each instruction stream. Even if a common body of
code serves to guide several processes, the programmer can be aware of each
process as a distinct entity and use conditional branches in the code to cause
different processes to do distinct things. When the number of processes
becomes a significant fraction of a hundred, it is no longer possible to treat.
processes individually. A single body of code must be able to direct the
activity of many processes simultaneously. This is often based on assigning
different portions of a large data structure to different processes and specify-
ing that each processor do the same operations on its portion of the data.

There are two major types of multiprocessor, distinguished by the way in
which results produced by one process are communicated to another. Results
are either placed in a shared memory to be accessed by another processor, or
they are explicitly sent to the process needing them, which is assumed to be
running on a processor sharing no memory with the one producing them. On
a shared memory system, it is not too hard to produce programming language
concepts which relieve the programmer of having to explicitly direct the
activity of each of many processes. The uniform sharing of memory helps in
writing programs which suppress the individuality of processes. A language
for writing such programs on shared memory multiprocessors, called the
Force[lI, has been implemented on five different shared memory multiproces-
sors. It classifies variables as either private to a single process or uniformly
shared among all processes. Commands are provided to spread the work on
different portions of a shared data structure over many processes.

This paper discusses the possibility of extending the ideas embodied in
the Force programming language to distributed memory multiprocessors.
The key problem is to prevent the need to explicitly communicate values
between processors from forcing the programmer to manage each process
explicitly. The approach taken is to define several types of variables to be
supported by a distributed memory multiprocessor language, and to develop
methods for updating versions or parts of these variables in the memories of
the individual processors. Variables which are accessible to many processors
require many memory cells for their representation, and the updating of such
variables requires global communication patterns involving all processors.
Such global communications are expensive in resource utilization, but may be
the only way to successfully manage a really large number of tightly coupled
processors. By providing support for uniform read and update access to con- C1
ceptually shared variables in a distributed memory multiprocessor, it is possi-
ble to simplify the problem of mapping a computation onto a specific system.
The mapping problem is reduced to load balancing and the reduction of.
interprocessor communication. go

t" , a ;t

LA1,1I2k
I '

Programming Systems with a Large Number of Processes
The first issue in multiprocessor algorithm structure is how the V.t of all

operations to be performed is divided into sets of operations to be done by
each process. One way is to decompose the problem data into items which
can be processed in parallel by a single control structure which will become a
single body of code executed by all processes. A parameterized reference
mechanism (indexing) causes the code to refer to different data items when
executed by different processes. In algorithms with a strong Euclidean space
connection, such as partial differential equation solution, data decomposition
is often called domain decomposition. In addition to decomposition of an
algorithm on the basis of data, it is also possible to partition the operations
into classes or functions which can be applied in parallel. A simple division
in the taxonomy of multiprocessor algorithms may thus be made on the basis
of data decomposition versus functional decomposition. Functionally parallel
algorithms can perhaps be further classified by the way in which the parallel
functions share data. For example, the macro-pipelining structure is well
known from the use of coroutines [21 even on uniprocessors.

Although work may be distributed on the basis of data decomposition or
on the basis of a functional decomposition, data decomposition is essential in
the case of a large number of processes. Since the number of independent
functions is limited, some data decomposition of an algorithm is surely neces-
sary when there are many processes. Thus data decomposition is more fun-
damental to large scale multiprocessor programming than functional decom-
position. Even a high level decomposition into a few parallel functions would
involve a large amount of data based parallel decomposition within each
function.

In addition to biasing parallel algorithm structure in favor of data
decomposition, the existence of a large number of processes has other qualita-
tive effects. In the interests of fault tolerance and portability, the correctness
of a program should not depend on the number of processes executing it.
Only the performance should vary if a few more or less processes are used.
Also, coordination of the work between various processes can be done in a
"democratic" or "master-slave" fashion. When the number of processes is
very large, the master tends to become a serious bottleneck in terms of per-
formance. The democratic, or distributed, coordination of work is thus
favored in this environment. Good examples of the importance of such
bottlenecks appear in the discussions of shared queue access in the NYU
Ultracomputer [31, and in the technique of self-scheduling used by many
applications on the HEP [4] multiprocessor. Another qualitative effect is on
process naming. Simple identifiers are totally inadequate for naming many
processes. Computable names, at least, are essential. Process names with an
associated integer index is one way of handling this, but it is better if process
individuality can be suppressed entirely when there are hundreds of
processes.

The effects described above appear in somewhat different forms in shared
and distributed memory multiprocessors. In a shared memory system, data
decomposition really amounts to the distribution of the operations on

a

different parts of a data structure over the processes. The data itself is not
really decomposed, but resides in the equally accessible shared memory. Of
major importance in this case is the synchronization of processes whidi access
the same shared memory cells. This really amounts to the producer of a data
item informing its subsequent consumer that the item is available. Synchron-
ization mechanisms involve the conditional delay of consumers. The many
process name management problem implies that synchronizations should
either refer to processes in a non-specific manner, e.g. mutual exclusion, wait
for all, etc., or be based on the data item being shared.

In a distributed memory system, the data is actually distributed among
the private memories of the processes using it. Operations on the same data
item must either be carried out by the same processor, or the item must be
explicitly communicated using a send in one process and a receive in another.
Conditional delay of the consumer is accomplished by a possible wait in the
receive operation. Thus both data and operations must be distributed over
the processors of the system. An issue often discussed in distributed memory
systems is the inequality of communication paths between different processor
pairs. Except, for very regular algorithms, it is quite difficult for a program-
mer to take explicit account of this in coding for a very large number of pro-
cessors. Such multiprocessors usually have a rich communications network
with a maximum distance no more than logarithmic in the number of proces-
sors. In addition, hardware and operating system support for message rout-
ing, as well as message header and buffering overhead, tends to minimize the
effects of unequal path length. We will take the attitude in what follows that
it is not feasible to provide language features which depend on differential
path length for communication among a very large number of processors.

A Shared Memory Language - the Force
The Force is a programming language for shared memory multiprocessors

which is based on Fortran and addresses the problem of programming for
very many processes. A Force program consists of a single body of code exe-
cuted by an arbitrary number of identical processes. Although the number of
processes is not specified in the program, it is assumed to be fixed at the
beginning of execution time, and remains fixed until program completion. A
Force program may be executed by only one process, and this feature often
aids in debugging errors in process synchronization. The language provides
execution time access to the number of processes. This number is usually
included in program output, and could be used to dynamically select a more
efficient algorithm within some range of its value.

The management of individual processes by name is completely
suppressed. An integer process index is available at execution time, but it is
never necessary for the user to access it explicitly, except possibly for debug-
ging purposes. Parallel primitive operations of the language use this index,
but in a manner transparent to the programmer. For example, operations to
spread the execution of a parallel loop (DOALL) over all processes may
automatically assign loop index values to different processes based on their

4

process index. It is also possible to use self scheduling to distribute values of
the index to processes, in which case not even the implementation. peeds to
use the process index.

The treatment of the parallelism characteristics of variables is funda-
mental to the Force programming philosophy. The Force allows variables
which are either strictly private to each process or uniformly shared among
all processes. Thus for a private variable P the single name will correspond to
a different memory cell (and value) for each process, while a shared variable S
will correspond to one shared memory location, accessible to all processes.
Private variables might reside in private memories if the system includes
them, or they might simply be separate shared memory cells with a different
address for each process. The above parallelism storage class distinction is
independent of any storage class specified by the underlying sequential
language, such as the Fortran distinction between local and common vari-
ables.

The synchronization required to control access to variables in shared
memory is also kept independent of process identity. All synchronizations
are "generic" in the sense that they do not designate specific processes.
Examples of generic synchronizations are critical sections, which specify that
only one process at a time may execute a body of code, and the barrier, which
specifies that no process may proceed past a given point until all have
arrived. Producer/consumer synchronization is also supported. Delays are
imposed by this synchronization on the basis of the implicit state, existent or
nonexistent, of a named variable, but the names of the processes accessing
the variable are irrelevant. The limitation to a single program for all
processes, the uniformity of access to shared variables, the suppression of the
process index, and the generic nature of synchronizations all combine to elim-
inate any underlying system topology from the model of parallel computation
supported by the Force language.

To give an idea of the Force language, a simple matrix multiply program
is shown in Figure 1. Note that parallel execution is the normal mode. State-
ments will be executed by all processes unless controlled by a specific parallel
construct. An extended version of the barrier synchronization allows inclu-
sion of inherently sequential operations, such as I/0. The semantics are that
all processes must arrive at the Barrier statement, then one arbitrary process
executes the code between Barrier and EndBarrier, after which all processes
proceed with the statement following EndBarrier. Assignment statements
executed by all processes should either have a private variable on the left
hand side, or perhaps a shared array which is indexed by a private variable.
Assignment statements inside a barrier should be to shared variables so that
values are available to all processes outside the barrier.

Concepts for Distributed Memory
The parallel programming methodology represented by the Force has

been influenced primarily by two things. The first is the desire to write

IS

Force MATMP of NP ident ME r
Shared REAL A(200,200), B(200,200), C(200,200)
Shared INTEGER M, LDIM
Private INTEGER I, J, IRES
Private REAL SUM
End declarations
Barrier

C The order of the matrices - M
READ (5, 50) M%

50 FORMAT(14)
C Echo the input with number of processes.

WRITE (6, 75) M, NP
75 FORMAT(' Order',14,' matrices using',14,' processes.')

End Barrier
C Set up the matrices to be multiplied.

Presched DO 10 1 = 1, M
DO 5 J 1. M

A(I. J) = ./3.
B(I, J) = 3.

5 CONTINUE
10 End Presched DO

Barrier :
End Barrier
Selfsched DO 300 1 I, M

C Produce all of row I of the C matrix.

DO 200 J - I, M
SUM = 0.0
DO 100 K- IM

SUM - SUM + A(I,K)*B(K,J)
100 CONTINUE

C(I,J) - SUM
200 CONTINUE
300 End Selfsched DO

Barrier
C Write the results.

DO 201 - I, M
WRITE (8, 500) (C(I, J1), J1- 1,M)

20 CONTINUE
500 FORMAT(6E13.6)

End Barrier
Join
END

Figure 1: A Matrix Multiply Force Program.

programs for very many processes, and the second is the underlying shared
memory model of computation. To move the methodology into the

6

distributed memory environment, we must consider what features are
inherent to the many process situation. The bias toward data decorrqposition
is still present. We again bypass the problem of a high level decomposition
into a few functions, and treat the data decomposition environment which
must exist within each function in order to employ many processes. We
therefore consider the case in which the same code is loaded into the program
memories of all processors. For simplicity, we assume a static number of pro-
cessors, all of which start together and are available until the end of the pro-
gram. Independence of the program from the number of processors is still
important. Even if we agreed on some restricted interconnection topology,
such as a full hypercube, it would still not be desirable to write a program
which could run only on a hypercube of a given dimension.

The way in which a parallel language supports references to variables
underlies the computational model it represents, and in distributed memory
systems, there are more identifiable parallel storage classes than in a shared
memory multiprocessor. If we assume that the private versus shared distinc-
tion has meaning at the parallel algorithm level, we must see how this is
reflected in a program for a non-specific distributed memory multiprocessor.
We assume only that all memory is divided among the processors, that any
cell is accessible to only one of them, and that communication among the pro-
cessors is entirely by means of message passing. Private variables can be han-
dled immediately. They are the same as in the shared memory case; a single
name refers to a distinct cell in each processor's memory. A concept useful
later in describing structured variables is that of a unique variable,
represented by one memory cell in the memory of a single processor. A
unique simple variable would have algorithmic meaning if one processor had
unique capabilities, as in the case of a special I/O processor.

Data considered shared in an abstract parallel algorithm are treated in
several different ways in actual distributed memory multiprocessor programs.
The first case is that of a variable with a single value available to all proces-
sors. It must be represented by one cell in each processor's memory. To keep
the values of all the representatives the same, any update must be performed
cooperatively by all the processors. We will call such variables cooperative
update shared variables. The special case of a read-only shared variable fits
well here. The alternative of having a single processor "own" a shared vari-
able and supply its value to others upon request seems untenable in the many
processor case as a result of the performance penalty imposed by the sequen-
tial bottleneck.

Another type of "shared" variable is sometimes used in distributed
memory multiprocessor programs. It is often more efficient to make a value
available to many processors by carrying out redundant computations rather
than by communicating its value. The simplest example is that of a loop
index which should step through the same range in each processor. Its value
should surely be incremented independently by each processor rather than
being broadcast from a single processor which calculates it. We will call such
variables replicated. Note that, although a replicated variable will take on
the same sequence of values in every processor, a given update to the

7 5

representative in one processor may occur at a somewhat different time than
the corresponding update in a different processor, since processor speeds may
vary. This is in contrast to changes to a cooperative update variablp, which
are done simultaneously by all processes cooperating by way of message pass-
ing.

Structured variables, vectors, arrays, etc., bring up a different aspect of
the parallel storage class of variables. Each component of a structure has one
of the above classes, but the structure as a whole may present a different
aspect. Private structures are straightforward, and the simple case of a
shared structure, where all elements of the structure are shared is useful.
Large arrays, however, are probably distributed in such a way that only a
fraction of the structure is stored in any one processor. An array distributed
by rows, for example, might be considered to have each element of class
unique. The indexed array name A(I,) could be considered to have parallel
class unique, but the entire structure A is known to more than one processor,
so the array as a whole is in some sense shared. A parallel loop over the row
index involving A in the loop body should, ideally, distribute the work over
the processors so that each processor handles index values for its own rows.
Of course, this is only possible when the loop does not specify combining ele-
ments from different rows in an arithmetic operation. We will name the
storage class of such variables fragmented. Various fragmentation patterns
are possible for a structure, and a language should attempt to suppress or
simplify these details as much as possible. At the minimum, there should be
automatic translation of algorithm level indexing into an address in the
correct processor's memory. Note that the specific fragmentation pattern
will fix the way in which parallel operations on the structure are allocated to
different processors.

Figure 2 summarizes the parallel storage classes identified for distributed
memory multiprocessors. Each class has its use in a distributed memory mul-
tiprocessor program. Private variables are commonly used for temporaries
and intermediate results. Major data structures of an algorithm are usually
shared in some way. Cooperative update variables require extensive commun-
ications for any write and are best used for algorithm parameters which
change infrequently. Replicated variables require redundant computation
and should be used only if updates are computationally simple. Fragmented

Simple Variables Structured Variables
Unique Unique
Private Private
Cooperative update Cooperative update
Replicated Replicated

Fragmented

Figure 2: Parallel Storage Classes in Distributed Memory

8

* * * . ~ ~ - ' ~

structures do not require an amount of storage which grows with the number
of processors. Although they limit access, they are essential for handling very
large structures in a distributed memory system. . r

When a fragmented variable has a structure associated with some
Euclidean space, and the fragmentation pattern associates connected subre-
gions with each processor, the term domain decomposition is often used. In
many algorithms, only processors containing data for spatially adjacent
subregions need to communicate values. This leads to the idea of processors
being neighbors, and to nearest neighbor communication patterns. Note that
this idea is based on the fragmentation pattern of a particular data structure,
and does not necessarily have anything to do with any physical communica-
tion network. Only in programs with a very simple structure will it be possi-
ble to arrange things so that the same processors will be neighbors with
respect to all fragmented variables.

Several global communications patterns are useful for operating on vari-
ables of different parallel storage classes, and in particular, for transforming
data from one storage class to another. Many of these are discussed by
Lubeck and Faber[5] in connection with a particle-in-cell program. The sim-
plest of these communications is the broadcast. It carries a unique variable
in some processor into a cooperative update variable, with representatives in
all processors. The implementation of broadcast using a logarithmic com-
munication network is often by means of a spanning tree[6]. A variation on
the broadcast is to start with a private variable, having different values in
each processor, and a fragmented selection vector, having one logical element
in each processor,one of which is true and the rest false. The broadcast then
makes the values of the private variable in all processors equal to that in the
selected processor. It thus carries a private into a cooperative update variable
with the aid of the selection vector. Note that the private variable could be
replaced by a fragmented vector with one component in each processor.

Another form of the broadcast is the universal broadcast. The adjective,
universal, indicates that the same communication is done simultaneously by
all processors. In this case, each processor broadcasts a different value to all
the rest. A universal broadcast carries either a private variable or a frag-
mented structure into a cooperative update structure the number of whose
components is equal to the number of processors. Both simple broadcast
from a unique variable and universal broadcast, multiply the amount of
storage needed by the number of processes.

A communication pattern which is often used to combine partial results
computed in separate processors is the generalized accumulate. Although it
is called accumulate, it can be done not only with addition but with any asso-
ciative and commutative operation, such as multiply, max, min, and, or,
indez.of.maz, etc. It carries a private variable or fragmented vector with one
component per processor into a unique scalar. It can be carried out by using
a spanning tree communication pattern in the direction opposite to that used
to broadcast. The universal accumulate provides for the accumulated result
to be communicated to all processors. It carries a fragmented vector or
private scalar into a cooperative update scalar. The storage required by the

9

result of an accumulate is less than needed by its operands while universal
accumulate does not change the storage needs.

A final important global communication pattern is a universal echange.
In this communication, each processor has a specific item or set of items to
send to each other processor. One can think of a two dimensional array of
distinct messages indexed by source processor number and destination pro-
cessor number. The communication starts with a processor holding a!! mes-
sages having its processor number as the source index, and finishes with that
processor holding messages having its number as the destination index. The
universal exchange carries a fragmented structure into a fragmented structure
having a different mapping. A common use of this communication pattern is
to transpose the fragmentation pattern of a matrix, that is, to change a
matrix distributed by rows over the processors to one distributed by columns.

The global communications patterns, broadcast, universal broadcast,
generalized accumulate, universal accumulate, and universal exchange, all
involve considerable communications. On machines with a highly concurrent
communications network, however, they all have fairly efficient implementa-
tions. If the number of processors is a power of two, they can all be imple-
mented using the butterfly communication pattern with k steps, where k is
the base two log of the number of processors. At the jth step, each processor
communicates with its 2ith neighbor. Figure 3 illustrates the idea by

MOO M10 M20 M30
NM01 MI! M21 M31
M02 MI12 M22 NM32
M03 M13 M23 /M33

MOO MOI M20 M21
N110 111 30 X31

M02 NM03 M22 NM23
M112 13 N1M32 N133

N110 N111 M1' Il2 N11M3

M20 M21 M22 M23
M30 M31 M32 M33

Figure 3: Communication Pattern for Universal Exchange

10 MM

X ~NMU~NMi I

showing the communications in a four processor system doing universal
exchange. It can be seen that neighbors exchange half of their sets of mes-
sages at each step. Universal broadcast uses the same communication pat-
tern, but each processor begins with one item to be broadcast, and doubles
the size of its result set at each step by including all the results from its
neighbor at that step. The same pattern can also be used for universal accu-
mulate, where neighbors exchange single values and then perform the associa-
tive operation on the pair to give a single result.

Implications of the Distributed Memory Environment
It can be seen from the above discussion that, even with the most basic

model of a distributed memory multiprocessor, in which the topology of the
communications network is completely suppressed by assuming a fixed
transmission time from any processor to any other, data access limitations
are still imposed by the need to fragment large data structures over the pro-
cessors. The question of how to partition the various fragmented data struc-
tures of a program is the most basic form of the so-called mapping problem,
which has usually been investigated in connection with specific machine topo-
logies 17), [8]. A language for this environment should support the
specification of fragmentation patterns, access to cooperative update and
replicated shared variables, and at a minimum, verify accessibility of items in
a fragmented structure to the processors using them. At the best, we might
imagine an automatic assignment of work on fragmented structures to the
processor having access to the required items.

Some of the implications of distributed memory are best discussed in
connection with specific applications. Gaussian elimination without pivoting
works well when the matrix is fragmented either by rows or by columns, pro-
vided that the loops over row and column indices are nested accordingly, but
it is well known that a poor work balance among the processors results if
blocks of adjacent rows (or columns) are assigned to the same processor [9].
Gaussian elimination with partial pivoting is somewhat more complicated. In
order to allow the search for the pivot element to be done in parallel, the
matrix should be fragmented by rows. The problem of singling out the pro-
cessor containing the current pivot row to do certain operations is a specialcase Of the more general dynamnic selection problem. It is often easy to com-
pute a fragmented selection vector so that the selected processor has a true
valie for its component while the rest have a false, but in order for all pro-
cessors to know the identity of the selected processor, a broadcast is required.
This arises not only in the elimination phase, where a maximum search does
the selection, but also in the back substitution if the pivot vector is main-
tained as a fragmented structure.

One very general aspect of the dynamic selection problem deserves men-
tion. In shared memory systems, the technique of self scheduling is orien
used to allocate work to processors. In this distributed computation. each

process can independently determine the next piece of work it is to do, and
report that the work has been assigned by a synchronized access to shared

11I

~ 'I' ~ * . p..

memory. In a distributed memory system, it is not possible for a processor to
both select a piece of work and to report that selection without comipunicat-
ing with all other processors. Thus the adjective, self, cannot be used to
describe the scheduling process, and in this sense, self scheduling is impossi-
ble in a distributed memory system.

The particle-in-cellapplication discussed for distributed memory in [5]7
and earlier by Hiramoto[0 for shared memory, is a particularly good source
of implications. The problem involves two very large data structures, to
which parallel operations should be applied, and which need to be fragmented
for this reason. One is a list of particle positions and velocities, and the other
is data associated with a grid of points in Euclidean space, over which a par-
tial differential equation must be solved. Domain decomposition is the
appropriate fragmentation pattern for data associated with the grid, but the
particles do not remain fixed with respect to the grid, nor is their density uni-
form over the space. Thus, for load balancing reasons alone, it is not reason-
able to fragment the particle data so that each processor has the particles
corresponding to its subregion of the grid. Lubeck's solution to this problem
was to use some of the communication patterns described above to convert a
fragmented structure to a shared one at key points in the algorithm.

Conclusions

The Force parallel programming language has shown that it is possible to
support a shared memory multiprocessor model of computation which
suppresses all explicit process management and requires no topological con-
siderations in order to implement a parallel algorithm in terms of the model.
In a distributed memory multiprocessor, there are ways of modeling shared
variables and updating them using global communications. In this sense, it is
possible to implement a language such as the Force in distributed memory;
but it would amount to simulating a shared memory system with a distri-
buted one. The performance of such a simulation is not likely to be accept-
able.

The idea of fragmented structures seems key to efficient programs for a
distributed memory multiprocessor. Topological considerations are intro-
duced into the computation as soon as fragmentation patterns are specified.
Even the weakly specified pattern, divide equally over the processors, can
lead to difficulties if used on two interacting, but incommensurate, data
structures, such as particles and cells. Many problems can be addressed by
judicious use of a set of global communications, which should be efficiently
supported by the hardware and software of the run time system. The author
believes that any general purpose language for large scale, distributed
memory multiprocessors will have to be based on extensive support for access
to fragmented variables and on a careful choice of global communication pat-
terns.

12 -

REFERENCES

[1] H. F. Jordan, "The Force," in The Characteristics of Parallel Algorithms,
L. H. Jamieson, D. B. Gannon and R. J. Douglass, Eds., Chap. 16, MIT
Press (1987).

121 NI. E. Conway, "Design of a separable transition-diagram compiler,"
Comm. ACM, Vol. 6, No. 7, 396-408 (1963).

131 A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. McAuliffe, L. Rudolph
and M. Snir. "The NYU Ultracomputer - Designing an MIMD Shared
Memory Parallel Computer," IEEE Trans. on Comp., Vol. C-32, No. 2
(Feb. 1983).

[41 J. S. Kowalik, Ed., Parallel MJMD Computation: The HEP Supercomputer
and its Applications, MIT Press (1985).

15] 0. NJ. Lubeck and V. Faber. "Modeling the Performance of Hypercubes:
A Case Study Using the Particle-In-Cell Application," Los Alamos
National Laboratory document LAUR 87-1522, submitted to Parallel
Computing, (1087).

161 S. L. Johnsson and Ching-Tien Ho, "Spanning Graphs for Optimum
Broadcast and Personalized Communication in Hypercubes," Yale
University report YALEU/DCS/TR-500 (Nov. 1986).

[7] S. Bokhari, "On the Mapping Problem," IEEE Trans. Comput., Vol. C-
30, No. 3, pp. 207-214 (March 1981).

[8] F. Berman and L. Snyder. "On Mapping Parallel Algorithms into Parallel
Architectures." Proc. 1984 Int'nl Conf. on Parallel Processing, (Aug.
1981).

[91 G. A. Geist and M. T. Heath, "Matrix Factorization on a Hypercube Nul-
tiprocessor," in tlypercube Multiprocessors 1986, pp. 161-180, SIAM, Phi-
ladelphia (1986).

1101 R. ltiramoto, "Some Issues in Parallel Processing as Encountered on the
Denelcor lIEP," Parallel Computing, Vol. 3, No. 2, pp. 111-127 (May
1986).

13

BIBLIOGRAPHIC DATA 1. Report No. 3. Recipien-'s Accession No.
SHEET ECE Technical Report 87-1-3

4. Title and Su title A 'S. Report Date

Programming Language Concepts for Multiprocessors September 1987

7. Author(s) 6. Perfprming Organization Rept.
HaZry F. Jordan NO-4CSDG 87-4

9. Performing Organization Name and Address 10. Pcoject/Task/.ock Unit o.
Computer Systems Design Group
Department of Electrical and Computer Engineering 11. Conuact/Gcant No.
University of Colorado 9-XSH-5604M-1
Boulder, CO 80309-0425 USA

12. Sponsorin& Organization Name and Address 13. Type of Report & Period
Los Alamos National Laboratory Covered
P.O. Box 990 Interim
Los Alamos, NM 87545 14.

15. supplemenaryNoes Also supported in part by ONR under Grant N00014-86-k-0204.

16. Abstracts It is now possible to build multiprocessor systems to support the tightly cou-

pled activity of hundredsof thousands of different instruction streams, or processes,
either by coupling many monoprocessors, or a smaller number of pipelined multiprocessors,
through a high concurrency switching network. This network may couple processors to mem-
ory modules, making a shared memory multiprocessor system, or it may couple processor/
memory pairs, making a distributed memory system.

The need to direct very many processes simultaneously places qualitatively different
demands on a programming language than the direction of a single process. In spite of the
different requirements, most languages for multiprocessors have just extended conventional
single stream programing languages. The extensions are often implemented by way of sub-
routine calls and have little impact on the basic structure of the language. This paper
attempts to examine the underlying conceptual structure of parallel languages for large
scale multiprocessors on the basis of an existing language for share memory multiprocessorl,
known as the Force, and to extend the concepts in this language to distributed memory syst ms.

17. Key Words and Document Analysis. 17s. Descriptors

mul tiprocessor
programming language
shared memory
distributed memory
parallel programing

17b. identifiers/Open-Ended Terms

the Force

17.. COATI Field/Group

IS. AMilability Statement 19. $ccur.t) Class (Thi, 21. Na. of PajesRepot:

20.eu (,ass (Tht. 22. Price
PV, ;V'

VOMttIS35 i-lI I10O i J.

qlO -{4lt

m m r'

DR'C

JaLo

